Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures
نویسندگان
چکیده
The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut Pb(Mg(1/3)Nb(2/3)O3-(PbTiO3) (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices.
منابع مشابه
Thermodynamics of strained vanadium dioxide single crystals
Related Articles Magnetic field modulated dielectric relaxation behavior of Pt/BiScO3-PbTiO3/La0.7Sr0.3MnO3 heterostructure in metal-insulator transition region: An equivalent-circuit method J. Appl. Phys. 110, 114118 (2011) The dynamical process of the phase transition from VO2(M) to VO2(R) J. Appl. Phys. 110, 113517 (2011) Insulator-metal transition in GeTe/Sb2Te3 multilayer induced by grain ...
متن کاملTuning of near-infrared luminescence of SrTiO3:Ni2+ thin films grown on piezoelectric PMN-PT via strain engineering
We report the tunable near-infrared luminescence of Ni(2+) doped SrTiO3 (STO:Ni) thin film grown on piezoelectric Pb(Mg(1/3)Nb(2/3))(0.7)Ti(0.3)O3 (PMN-PT) substrate via strain engineering differing from conventional chemical approach. Through controlling the thickness of STO:Ni film, the luminescent properties of the films including emission wavelength and bandwidth, as well as lifetime can be...
متن کاملVoltage Control of Metal-insulator Transition and Non-volatile Ferroelastic Switching of Resistance in VOx/PMN-PT Heterostructures
The central challenge in realizing electronics based on strongly correlated electronic states, or 'Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3...
متن کاملDynamic Strain in Epitaxial Ferroic Oxide Films — @bulletorkidia Multiferroic Materials Based on Artificial Thin Film Het- Erostructures —
Epitaxial strain is known or theoretically predicted to essentially influence the electronic properties of transition metal perovskite oxides like (Ba,Sr)TiO3. One approach for reversible biaxial strain variation in epitaxial films fitting to a pseudocubic lattice parameter of about 4.0 Angstrom is the utilization of a ferroand piezoelectric PMN-PT(001) substrate. (PMN-PT stands for 0.72PbMg1/3...
متن کاملOrigin of metallicity of LaTiO3 ÕSrTiO3 heterostructures
It is shown that LaTiO3, in superlattices with SrTiO3, is a strongly correlated metal rather than a Mott insulator. The tetragonal lattice geometry imposed by the SrTiO3 substrate leads to an increase of the Ti 3dt2g bandwidth and a reversal of the t2g crystal field relative to the orthorhombic bulk geometry. Using dynamical mean field theory based on finite-temperature multiband exact diagonal...
متن کامل